Phase separation and nucleation: from frustration to control

Klaas Wynne, School of Chemistry, University of Glasgow, UK

Ever since it was suggested that the anomalous properties of liquid water could explained by an amorphous to amorphous liquid-liquid transition, the hunt has been on for other examples of such transitions. ¹ Surprisingly, only two other examples of liquid-liquid transitions were found in molecular liquids and even these are highly controversial. I will show that one of these (in *n*-butanol) is, in fact, a liquid crystal transition but one in which the liquid crystal is not "in between" the liquid and the crystal but instead frustrates the formation of the crystal. ²

However, we are not content to passively observe phase transitions but desire to gain control over the nucleation of new phases. Although there are now numerous examples of control using laser-induced nucleation, a physical understanding is absent and preventing progress. I will show that concentration fluctuations in the neighbourhood of a liquid-liquid critical point can be harnessed by a laser-tweezing potential to induce concentration gradients. ³ A simple theoretical model shows that the stored electromagnetic energy of the laser beam produces a free-energy potential that forces phase separation or triggers the nucleation of a new phase. Experiments in a liquid mixture using a low-power laser diode confirm the effect. Phase separation and nucleation through a laser-tweezing potential explains the physics behind non-photochemical laser-induced nucleation and suggests new ways of manipulating matter.

- 1 Mosses, J., Syme, C. D. & Wynne, K. Order Parameter of the Liquid–Liquid Transition in a Molecular Liquid. *J. Phys. Chem. Lett.* **6**, 38-43 (2015). <u>https://doi.org/10.1021/jz5022763</u>
- 2 Syme, C. D., Mosses, J., González Jiménez, M., Shebanova, O., Walton, F. & Wynne, K. Frustration of crystallisation by a liquid–crystal phase. *Sci. Rep.* **7**, 42439 (2017). <u>https://doi.org/10.1038/srep42439</u>
- 3 Walton, F. & Wynne, K. Control over phase separation and nucleation using a laser-tweezing potential. *Nat. Chem.* **10**, 506-510 (2018). <u>https://doi.org/10.1038/s41557-018-0009-8</u>

